Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 117: 111097, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38355078

RESUMO

Low-Intensity Pulsed Ultrasound (LIPUS) holds therapeutic potential in promoting skeletal muscle regeneration, a biological process mediated by satellite cells and myoblasts. Despite their central roles in regeneration, the detailed mechanistic of LIPUS influence on satellite cells and myoblasts are not fully underexplored. In the current investigation, we administrated LIPUS treatment to injured skeletal muscles and C2C12 myoblasts over five consecutive days. Muscle samples were collected on days 6 and 30 post-injury for an in-depth histological and molecular assessment, both in vivo and in vitro with immunofluorescence analysis. During the acute injury phase, LIPUS treatment significantly augmented the satellite cell population, concurrently enhancing the number and size of newly formed myofibers whilst reducing fibrosis levels. At 30 days post-injury, the LIPUS-treated group demonstrated a more robust satellite cell pool and a higher myofiber count, suggesting that early LIPUS intervention facilitates satellite cell proliferation and differentiation, thereby promoting long-term recovery. Additionally, LIPUS markedly accelerated C2C12 myoblast differentiation, with observed increases in AMPK phosphorylation in myoblasts, leading to elevated expression of Glut4 and PGC-1α, and subsequent glucose uptake and mitochondrial biogenesis. These findings imply that LIPUS-induced modulation of myoblasts may culminate in enhanced cellular energy availability, laying a theoretical groundwork for employing LIPUS in ameliorating skeletal muscle regeneration post-injury. NEW & NOTEWORTHY: Utilizing the cardiotoxin (CTX) muscle injury model, we investigated the influence of LIPUS on satellite cell homeostasis and skeletal muscle regeneration. Our findings indicate that LIPUS promotes satellite cell proliferation and differentiation, thereby facilitating skeletal muscle repair. Additionally, in vitro investigations lend credence to the hypothesis that the regulatory effect of LIPUS on satellite cells may be attributed to its capability to enhance cellular energy metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP , Músculo Esquelético , Regeneração , Ondas Ultrassônicas , Proteínas Quinases Ativadas por AMP/metabolismo , Diferenciação Celular , Proliferação de Células , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Camundongos , Células Cultivadas
2.
Chem Commun (Camb) ; 60(20): 2752-2755, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189978

RESUMO

CdS QDs were fabricated using bi-ligands 11-sulfanylundecanoic acid and proline for photo-induced aqueous-phase aldol condensation of biomass-derived furfural compounds and ketones, and they displayed acceptable selectivity, activity and recycling properties for generation of a wide range of products with diverse applications. This work facilitates understanding the molecular-level design concepts of semiconductor photocatalysts.

3.
Biomed Pharmacother ; 170: 116031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38113621

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent progressive disorder. Moxibustion has found widespread use in clinical practice for OA, while its underlying mechanism remains elusive. OBJECTIVE: To investigate whether moxibustion can ameliorate OA by influencing the metabolic processes in OA and to elucidate the specific metabolic mechanisms involved. METHODS: C57BL/6J WT mice were randomly assigned to one of three groups: the SHAM group, the ACLT group, and the ACLT+M group. In the ACLT+M group, mice underwent moxibustion treatment at acupoints Shenshu (BL23) and Zusanli (ST36) for a continuous period of 28 days, with each session lasting 20 min. We conducted a comprehensive analysis to assess the impact of moxibustion on OA, focusing on pathological changes, intestinal flora composition, and serum metabolites. RESULTS: Moxibustion treatment effectively mitigated OA-related pathological changes. Specifically, moxibustion treatment resulted in the amelioration of articular cartilage damage, synovial inflammation, subchondral bone sclerosis when compared to the ACLT group. Moreover, 16S rDNA sequencing analysis revealed that moxibustion treatment positively influenced the composition of the flora, making it more similar to that of the SHAM group. Notably, moxibustion treatment led to a reduction in the abundance of Ruminococcus and Proteobacteria in the intestine. In addition, non-targeted metabolomics analysis identified 254 significantly different metabolites between the groups. Based on KEGG pathway analysis and the observed impact of moxibustion on OA-related inflammation, moxibustion therapy is closely associated with the cAMP-related signaling pathway. CONCLUSION: Moxibustion can relieve OA by regulating intestinal flora and via impacting cAMP-related signaling pathway.


Assuntos
Microbioma Gastrointestinal , Moxibustão , Osteoartrite , Camundongos , Animais , Camundongos Endogâmicos C57BL , Osteoartrite/tratamento farmacológico , Inflamação , Transdução de Sinais
4.
Sci China Life Sci ; 67(4): 745-764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157106

RESUMO

The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.


Assuntos
Butiratos , Disbiose , Camundongos , Animais , RNA Ribossômico 16S/genética , Envelhecimento , Homeostase
5.
Innovation (Camb) ; 4(5): 100479, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37539440

RESUMO

Skeletal muscle atrophy is a debilitating condition that significantly affects quality of life and often lacks effective treatment options. Muscle atrophy can have various causes, including myogenic, neurogenic, and other factors. Recent investigation has underscored a compelling link between the gut microbiota and skeletal muscle. Discerning the potential differences in the gut microbiota associated with muscle atrophy-related diseases, understanding their influence on disease development, and recognizing their potential as intervention targets are of paramount importance. This review aims to provide a comprehensive overview of the role of the gut microbiota in muscle atrophy-related diseases. We summarize clinical and pre-clinical studies that investigate the potential for gut microbiota modulation to enhance muscle performance and promote disease recovery. Furthermore, we delve into the intricate interplay between the gut microbiota and muscle atrophy-related diseases, drawing from an array of studies. Emerging evidence suggests significant differences in gut microbiota composition in individuals with muscle atrophy-related diseases compared with healthy individuals. It is conceivable that these alterations in the microbiota contribute to the pathogenesis of these disorders through bacterium-related metabolites or inflammatory signals. Additionally, interventions targeting the gut microbiota have demonstrated promising results for mitigating disease progression in animal models, underscoring the therapeutic potential of modulating the gut microbiota in these conditions. By analyzing the available literature, this review sheds light on the involvement of the gut microbiota in muscle atrophy-related diseases. The findings contribute to our understanding of the underlying mechanisms and open avenues for development of novel therapeutic strategies targeting the gut-muscle axis.

6.
Brain Sci ; 13(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626479

RESUMO

Sleep loss may lead to negative bias during social interaction. In the current study, we conducted a revised social evaluation task experiment to investigate how sleep deprivation influences the self-referential and cognitive processes of social feedback. The experiment consisted of a first impression task and a social feedback task. Seventy-eight participants completed the first impression task and were divided into normal and poor sleep groups. The results of an independent samples t-test showed that participants who slept worse were less likely to socialize with others but did not evaluate others as less attractive. Afterward, 22 of the participants from the first impression task were recruited to complete the social feedback task during functional magnetic resonance imaging (fMRI) on the mornings following two different sleep conditions at night: one night of normal sleep and one night of sleep deprivation. The results of this within-subject design study showed that participants who experienced the latter condition showed increased activation within the default mode network (i.e. superior parietal lobule, precuneus, inferior parietal lobule, inferior temporal gyrus, and medial frontal gyrus) and anterior cingulate cortex (ACC) and stronger negative insula functional connectivity (FC) with the precuneus to negative feedback than positive feedback. The altered activation and behavioral pattern may indicate a negative bias for social cues. However, stronger negative coupling may indicate stronger cognitive control, which may protect against potential damage to self-concept. Our study suggested that sleep impairs most social functions, but may protect against impairment of important ones, such as self-concept.

7.
Front Plant Sci ; 14: 1227526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496854

RESUMO

Backgrounds: Potato is sensitive to heat stress particularly during plant seedling growth. However, limited studies have characterized the expression pattern of the StGATA family genes under heat stress and lacked validation of its function in potato plants. Methods: Potato plants were cultivated at 30°C and 35°C to induce heat stress responses. qRT-PCR was carried out to characterize the expression pattern of StGATA family genes in potato plants subjected to heat stress. StGATA2 loss-of-function and gain-of-function plants were established. Morphological phenotypes and growth were indicated by plant height and mass. Photosynthesis and transpiration were suggested by stomatal aperture, net photosynthetic rate, transpiration rate, and stomatal conductance. Biochemical and genetic responses were indicated by enzyme activity and mRNA expression of genes encoding CAT, SOD, and POD, and contents of H2O2, MDA, and proline. Results: The expression patterns of StGATA family genes were altered in response to heat stress. StGATA2 protein located in the nucleus. StGATA2 is implicated in regulating plant height and weight of potato plants in response to heat stresses, especially acute heat stress. StGATA2 over-expression promoted photosynthesis while inhibited transpiration under heat stress. StGATA2 overexpression induced biochemical responses of potato plant against heat stress by regulating the contents of H2O2, MDA and proline and the activity of CAT, SOD and POD. StGATA2 overexpression caused genetic responses (CAT, SOD and POD) of potato plant against heat stress. Conclusion: Our data indicated that StGATA2 could enhance the ability of potato plants to resist heat stress-induced damages, which may provide an effective strategy to engineer potato plants for better adaptability to adverse heat stress conditions.

8.
Front Plant Sci ; 14: 1218962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409298

RESUMO

Background and aims: Mitogen-activated protein kinases (MAPKs) have been reported to respond to various stimuli including heat stress. This research aimed to investigate whether StMAPK1 is implicated in the transduction of the heat stress signal to adapt heat stress as a thermos-tolerant gene. Materials and methods: Potato plants were cultivated under mild (30°C) and acute (35°C) heat stress conditions to analyze mRNA expression of StMAPKs and physiological indicators. StMAPK1 was up-regulated and down-regulated by transfection. Subcellular localization of StMAPK1 protein was observed by fluorescence microscope. The transgenic potato plants were assayed for physiological indexes, photosynthesis, cellular membrane integrity, and heat stress response gene expression. Results: Heat stress altered the expression prolife of StMAPKs. StMAPK1 overexpression changed the physiological characteristics and phenotypes of potato plants under heat stresses. StMAPK1 mediates photosynthesis and maintains membrane integrity of potato plants in response to heat stress. Stress response genes (StP5CS, StCAT, StSOD, and StPOD) in potato plants were altered by StMAPK1 dysregulation. mRNA expression of heat stress genes (StHSP90, StHSP70, StHSP20, and StHSFA3) was affected by StMAPK1. Conclusions: StMAPK1 overexpression increases the heat-tolerant capacity of potato plants at the morphological, physiological, molecular, and genetic levels.

9.
J Virol ; 97(5): e0036923, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37162335

RESUMO

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Linhagem Celular , Vírus da Febre Aftosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas , RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral , Cricetinae
10.
iScience ; 26(1): 105880, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36686392

RESUMO

Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.

11.
Biomacromolecules ; 24(1): 344-357, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563170

RESUMO

Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by enhanced helical chirality at the supramolecular level in metal coordination-induced protein folding, a series of alanine-based coil copolymers (poly-(l-co-d)-ala-NH2) carrying (l)- and (d)-alanine pendants were synthesized as a fresh research model to study the cooperative processes between homochirality property and metal coordination. The complexes of poly-(l-co-d)-ala-NH2 and metal ions underwent a coil-to-helix transition and exhibited remarkable nonlinear effects based on the enantiomeric excess of the monomer unit in the copolymers, affording enhanced helical chirality compared to poly-(l-co-d)-ala-NH2. More importantly, the synergistic effect of amplification of asymmetry and metal coordination triggered the formation of a helical molecular orbital on the polymer backbone via the coordination with the d orbital of copper ions. Thus, the helical chirality enhancement degree of poly-(l-co-d)-ala-NH2/Cu2+ complexes (31.4) is approximately 3 times higher than that of poly-(l-co-d)-ala-NH2/Ag+ complexes (9.8). This study not only provides important mechanistic insights into the enhancement of helical chirality for self-assembly but also establishes a new strategy for studying the homochiral amplification of asymmetry in biological supramolecular systems.


Assuntos
Alanina , Metais , Metais/química , Substâncias Macromoleculares , Alanina/química , Polímeros/química , Íons , Dobramento de Proteína
12.
Artigo em Inglês | MEDLINE | ID: mdl-35981661

RESUMO

Many studies have demonstrated that receptor interacting protein kinase-1 acts as a crucial mediator in the regulation of immune response, but evidence remains lacking for its direct interaction with bacteria. In this study, we found that challenge with lipopolysaccharide and lipoteichoic acid resulted in a significantly increased transcriptional expression of receptor interacting protein kinase-1 in zebrafish, suggesting the receptor interacting protein kinase-1 is implicated in anti-infectious responses. In accordance, we found that recombinant receptor interacting protein kinase-1 was not only able to bind to Gram-negative and -positive bacteria via interaction with lipopolysaccharide and lipoteichoic acid, but also agglutinate both Gram-negative and -positive bacteria in a Ca2+-dependent manner.


Assuntos
Lipopolissacarídeos , Peixe-Zebra , Animais , Bactérias Gram-Negativas , Imunidade Inata , Lectinas Tipo C , Lipopolissacarídeos/farmacologia
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(3): 336-341, 2022 May 30.
Artigo em Chinês | MEDLINE | ID: mdl-35678448

RESUMO

OBJECTIVE: In order to grasp the quality status of the first-aid ventilator in pre-hospital and field environment in time, the quality control and detection items of invasive ventilator were optimized to form a rapid detection operation process of first-aid ventilator and ensure the safety of patient treatment. METHODS: Based on the quality control detection data of invasive ventilator in hospital in recent years, methods such as narrowing the range of qualified criteria and analyzing confidence interval were adopted to extract indicators prone to deviation and verify their correlation with similar indicators, so as to form an optimized rapid detection portfolio. RESULTS: Compared with the original quality control detection procedures, the detection indicators of the rapid detection procedures were reduced from 5 categories of 24 indicators to 3 categories of 7 indicators. The detection time was shortened by 56.1% and the coincidence rate of the detection results was 100% after the actual measurement and verification. CONCLUSIONS: Under the premise of ensuring the testing quality, the operating procedure for rapid detection of emergency ventilator can greatly reduce the detection time, and realize the rapid and high frequency quality control detection, so as to ensure the quality and safety of the equipment.


Assuntos
Serviços de Assistência Domiciliar , Ventiladores Mecânicos , Humanos , Controle de Qualidade
14.
Neuropsychologia ; 163: 108084, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762907

RESUMO

Empathy for pain has a strong adaptive function. It plays a protective role in survival and exerts a vital impact on successful social interaction. Sleep loss, however, is commonplace in current society, and people are increasingly plagued by it. Previous studies have investigated whether sleep loss affects empathy for pain, yet the results were undecided. We aimed to determine whether this effect is existed and further explore the temporal and frequency dynamics of neural activities involved in this effect by recording the electroencephalogram (EEG) signals. We recruited 25 healthy adults (11 females) who were required to perform a pain judgement and unpleasantness rating about the presented nociceptive and neutral pictures after nocturnal sleep (NS) and sleep deprivation (SD), and their neuronal activities were recorded by event-related potentials (ERPs). Results showed a significantly decreased amplitude in the early components (N2, N340) of vicarious pain processing after SD. In further time-frequency (TF) analysis, a reduced energy occurred in theta2 (5-7 Hz) band under SD condition. Moreover, the decreased theta2 was positively correlated with the subjective ratings of both other's pain and self-unpleasantness only under SD condition. Our results indicated that SD impairs affective sharing of empathy for pain.


Assuntos
Empatia , Privação do Sono , Adulto , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Dor/psicologia
15.
Ecotoxicol Environ Saf ; 224: 112705, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34454354

RESUMO

The microbiota of the intestine produces a wide array of biologically active molecules and together act as a composite endocrine organ. Due to our limited understanding of bacterial communities in aquaculture ecosystems, it is necessary to evaluate the interactions between environmental and intestinal microbiota and the potential consequences of disease. This study taken the traditional P. clarkii culture in the Sichuan Basin as an example, and analyzed the relationships between the microbiota of the environment and host through microbial analysis and microbiological diagnosis. Our results showed that the bacterial abundance in sediment was greater than in water, followed by the intestine, and some of bacteria from the environment successfully selected to colonize the intestine. The bacterial composition in the intestines of diseased and healthy crayfish was significantly different. The bacteria that colonized and proliferated in the intestine had very low abundances in sediment and water. Two potential pathogens, Aeromonas veronii, and Citrobacter freundii, and two potential probiotics, Lactococcus garvieae and Exiguobacterium undae, were identified. Using multiple, real, and traditional P. clarkii aquaculture sites in the Sichuan Basin, this study revealed that the microbial communities of the environment and animal host did indeed interact. Furthermore, these results indicated that P. clarkii in a healthy status are capable of regulating which bacteria colonize their intestines.

16.
Food Funct ; 12(18): 8635-8646, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34346464

RESUMO

Ulcerative colitis (UC) is a chronic lifetime disorder with a high incidence worldwide. A functional food-based method to prevent UC would be a good option for disease control. G. lemaneiformis oligosaccharides (GLOs) should have potent benefits for the gastrointestinal tract, based on in vitro fermentation assessed in our previous study. This study evaluated the therapeutic potential of GLOs in UC, as well as their possible mechanisms of action. The administration of GLOs was able to reduce the severity of dextran sulphate sodium-induced colitis by protecting mice from weight loss, reductions in colon length, inflammatory infiltration, and colon damage. Gut microbiota composition analysis showed that at the phylum level, GLOs could restore the composition of Bacteroidetes and decrease the level of Firmicutes. Consistently, it increased the contents of beneficial microbial metabolites and short-chain fatty acids in the mouse colitis model. In conclusion, GLOs could comprise a promising functional food strategy to alleviate UC symptoms.


Assuntos
Colite Ulcerativa/dietoterapia , Microbioma Gastrointestinal , Gracilaria/química , Oligossacarídeos/administração & dosagem , Oligossacarídeos/química , Animais , Animais não Endogâmicos , Bacteroidetes/crescimento & desenvolvimento , Configuração de Carboidratos , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácidos Graxos Voláteis/metabolismo , Firmicutes/crescimento & desenvolvimento , Alimento Funcional , Intestinos/metabolismo , Intestinos/microbiologia , Masculino , Camundongos
17.
Microb Pathog ; 158: 105056, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34153416

RESUMO

Combined treatment of AMPs with classical antibiotics has gained interest because it often results in a synergistic antibacterial effect. We demonstrated here that Pt5-1c, an AMP derived from phosvitin, had antibacterial activity against the MDR bacteria (S. aureus USA500, E. coli 577 and K. pneumoniae 2182) in the presence of serum. On this basis, we showed that Pt5-1c was synergistically active with traditional antibiotics (oxacillin, vancomycin, streptomycin and azithromycin) against the three MDR bacteria growing as biofilms in vitro and in vivo. Moreover, Pt5-1c restored sensitivity of S. aureus USA500 to oxacillin and vancomycin, E. coli 577 to streptomycin and K. pneumoniae 2182 to azithromycin. Importantly, long-term exposure to Pt5-1c did not give rise to antimicrobial resistance. Collectively, these data not only suggest a promising combinatorial therapy strategy to combat antibiotics-tolerant infections but also present a possibility of Pt5-1c being used to prolong the application of antibiotics including oxacillin, vancomycin, streptomycin and azithromycin, that are under threat of becoming ineffective due to antibiotic resistance.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Escherichia coli , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Proteínas Citotóxicas Formadoras de Poros , Staphylococcus aureus
18.
Plant Physiol ; 185(2): 424-440, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33721890

RESUMO

Orobanche cumana is a holoparasitic plant that attaches to host-plant roots and seriously reduces the yield of sunflower (Helianthus annuus L.). Effective control methods are lacking with only a few known sources of genetic resistance. In this study, a seed-soak agroinoculation (SSA) method was established, and recombinant tobacco rattle virus vectors were constructed to express RNA interference (RNAi) inducers to cause virus-induced gene silencing (VIGS) in sunflower. A host target gene HaTubulin was systemically silenced in both leaf and root tissues by the SSA-VIGS approach. Trans-species silencing of O. cumana genes were confirmed for 10 out of 11 target genes with silencing efficiency of 23.43%-92.67%. Knockdown of target OcQR1, OcCKX5, and OcWRI1 genes reduced the haustoria number, and silencing of OcEXPA6 caused further phenotypic abnormalities such as shorter tubercles and necrosis. Overexpression of OcEXPA6 caused retarded root growth in alfalfa (Medicago sativa). The results demonstrate that these genes play an important role in the processes of O. cumana parasitism. High-throughput small RNA (sRNA) sequencing and bioinformatics analyses unveiled the distinct features of target gene-derived siRNAs in O. cumana such as siRNA transitivity, strand polarity, hotspot region, and 21/22-nt siRNA predominance, the latter of which was confirmed by Northern blot experiments. The possible RNAi mechanism is also discussed by analyzing RNAi machinery genes in O. cumana. Taken together, we established an efficient host-induced gene silencing technology for both functional genetics studies and potential control of O. cumana. The ease and effectiveness of this strategy could potentially be useful for other species provided they are amenable to SSA.


Assuntos
Resistência à Doença/genética , Helianthus/genética , Orobanche/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Biologia Computacional , Expressão Gênica , Inativação Gênica , Helianthus/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Necrose , Orobanche/genética , Folhas de Planta/genética , Folhas de Planta/imunologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Vírus de Plantas/genética , Interferência de RNA , Sementes/genética , Sementes/imunologia , Análise de Sequência de RNA , Tubulina (Proteína)/genética
19.
Ecotoxicol Environ Saf ; 215: 112157, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773151

RESUMO

Hepatopancreatic Necrosis Syndrome (HPNS) severely impacts the Chinese mitten crab (Eriocheir sinensis) industry. However, little knowledge of the aetiology and pathogenesis of the disease causes significant difficulties in its prevention and control. In this study, we conducted a pathological analysis of HPNS through time-integrated large-volume sampling, to clarify the disease characteristics and mechanism of HPNS-afflicted crabs; besides, animal models were constructed to verify the pathological diagnosis. The results showed that the hepatopancreas was the principal target organ of HPNS; multiple correspondence analysis revealed that the main histopathological characteristics included non-interstitial atrophic hepatopathy diseases such as hepatic tubule atrophy, dilated hepatic tubules, and hepatic tubule necrosis. Additionally, the muscles also showed signs of disease, including myofibre atrophy, necrosis, and inflammation. Ultrastructural studies showed prominent apoptosis and autophagy-like alterations in the hepatopancreas of HPNS-afflicted crabs. Further, the establishment of animal models revealed that the double variate stimulation of environmental variables such as abamectin/sewage with nutrition deficiency could result in HPNS-similar lesions. Based on these studies, we concluded that HPNS is a chronic hepatopancreas-initiated energy-consumed disease with a low likelihood of pathogen but a high probability of environment and nutrition.


Assuntos
Braquiúros/fisiologia , Hepatopâncreas/patologia , Animais , Apoptose , China , Inflamação/patologia , Necrose/patologia , Alimentos Marinhos
20.
Plant Biotechnol J ; 19(7): 1370-1385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33484609

RESUMO

Host-induced gene silencing (HIGS) emerged as a new strategy for pest control. However, RNAi efficiency is reported to be low in Lepidoptera, which are composed of many important crop pests. To address this, we generated transgenic plants to develop HIGS effects in a maize pest, Mythimna separata (Lepidoptera, Noctuidae), by targeting chitinase encoding genes. More importantly, we developed an artificial microRNA (amiR) based PTA (polycistronic-tRNA-amiR) system for silencing multiple target genes. Compared with hpRNA (hairpin RNA), transgenic expression of a PTA cassette including an amiR for the gut-specific dsRNA nuclease gene MsREase, resulted in improved knockdown efficiency and caused more pronounced developmental abnormalities in recipient insects. When target gene siRNAs were analysed after HIGS and direct dsRNA/siRNA feeding, common features such as sense polarity and siRNA hotspot regions were observed, however, they differed in siRNA transitivity and major 20-24nt siRNA species. Core RNAi genes were identified in M. separata, and biochemical activities of MsAGO2, MsSID1 and MsDcr2 were confirmed by EMSA (electrophoretic mobility shift assay) and dsRNA cleavage assays, respectively. Taken together, we provide compelling evidence for the existence of the RNAi mechanism in M. separata by analysis of both siRNA signatures and RNAi machinery components, and the PTA system could potentially be useful for future RNAi control of lepidopteran pests.


Assuntos
Mariposas , Animais , Inativação Gênica , Mariposas/genética , Interferência de RNA , RNA de Cadeia Dupla , RNA de Transferência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...